Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Diagnostics (Basel) ; 13(7)2023 Apr 02.
Article in English | MEDLINE | ID: covidwho-2294690

ABSTRACT

Acute lower respiratory infection is a leading cause of death in developing countries. Hence, progress has been made for early detection and treatment. There is still a need for improved diagnostic and therapeutic strategies, particularly in resource-limited settings. Chest X-ray and computed tomography (CT) have the potential to serve as effective screening tools for lower respiratory infections, but the use of artificial intelligence (AI) in these areas is limited. To address this gap, we present a computer-aided diagnostic system for chest X-ray and CT images of several common pulmonary diseases, including COVID-19, viral pneumonia, bacterial pneumonia, tuberculosis, lung opacity, and various types of carcinoma. The proposed system depends on super-resolution (SR) techniques to enhance image details. Deep learning (DL) techniques are used for both SR reconstruction and classification, with the InceptionResNetv2 model used as a feature extractor in conjunction with a multi-class support vector machine (MCSVM) classifier. In this paper, we compare the proposed model performance to those of other classification models, such as Resnet101 and Inceptionv3, and evaluate the effectiveness of using both softmax and MCSVM classifiers. The proposed system was tested on three publicly available datasets of CT and X-ray images and it achieved a classification accuracy of 98.028% using a combination of SR and InceptionResNetv2. Overall, our system has the potential to serve as a valuable screening tool for lower respiratory disorders and assist clinicians in interpreting chest X-ray and CT images. In resource-limited settings, it can also provide a valuable diagnostic support.

2.
Journal of Ambient Intelligence and Humanized Computing ; : 1-16, 2022.
Article in English | EuropePMC | ID: covidwho-1728470

ABSTRACT

This paper explores the issue of COVID-19 detection from X-ray images. X-ray images, in general, suffer from low quality and low resolution. That is why the detection of different diseases from X-ray images requires sophisticated algorithms. First of all, machine learning (ML) is adopted on the features extracted manually from the X-ray images. Twelve classifiers are compared for this task. Simulation results reveal the superiority of Gaussian process (GP) and random forest (RF) classifiers. To extend the feasibility of this study, we have modified the feature extraction strategy to give deep features. Four pre-trained models, namely ResNet50, ResNet101, Inception-v3 and InceptionResnet-v2 are adopted in this study. Simulation results prove that InceptionResnet-v2 and ResNet101 with GP classifier achieve the best performance. Moreover, transfer learning (TL) is also introduced in this paper to enhance the COVID-19 detection process. The selected classification hierarchy is also compared with a convolutional neural network (CNN) model built from scratch to prove its quality of classification. Simulation results prove that deep features and TL methods provide the best performance that reached 100% for accuracy.

3.
Microsc Res Tech ; 84(11): 2504-2516, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1267462

ABSTRACT

This article is mainly concerned with COVID-19 diagnosis from X-ray images. The number of cases infected with COVID-19 is increasing daily, and there is a limitation in the number of test kits needed in hospitals. Therefore, there is an imperative need to implement an efficient automatic diagnosis system to alleviate COVID-19 spreading among people. This article presents a discussion of the utilization of convolutional neural network (CNN) models with different learning strategies for automatic COVID-19 diagnosis. First, we consider the CNN-based transfer learning approach for automatic diagnosis of COVID-19 from X-ray images with different training and testing ratios. Different pre-trained deep learning models in addition to a transfer learning model are considered and compared for the task of COVID-19 detection from X-ray images. Confusion matrices of these studied models are presented and analyzed. Considering the performance results obtained, ResNet models (ResNet18, ResNet50, and ResNet101) provide the highest classification accuracy on the two considered datasets with different training and testing ratios, namely 80/20, 70/30, 60/40, and 50/50. The accuracies obtained using the first dataset with 70/30 training and testing ratio are 97.67%, 98.81%, and 100% for ResNet18, ResNet50, and ResNet101, respectively. For the second dataset, the reported accuracies are 99%, 99.12%, and 99.29% for ResNet18, ResNet50, and ResNet101, respectively. The second approach is the training of a proposed CNN model from scratch. The results confirm that training of the CNN from scratch can lead to the identification of the signs of COVID-19 disease.


Subject(s)
COVID-19 , Deep Learning , COVID-19 Testing , Humans , Neural Networks, Computer , Radiography, Thoracic , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL